#include <algorithm> // for sort
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
using std::cout;
using std::ifstream;
using std::istringstream;
using std::sort;
using std::string;
using std::vector;
using std::abs;
// TODO: Add kStart and KFinish enumerators to the State enum.
enum class State {kStart, kFinish, kEmpty, kObstacle, kClosed, kPath};
// directional deltas
const int delta[4][2]{{-1, 0}, {0, -1}, {1, 0}, {0, 1}};
vector<State> ParseLine(string line) {
istringstream sline(line);
int n;
char c;
vector<State> row;
while (sline >> n >> c && c == ',') {
if (n == 0) {
row.push_back(State::kEmpty);
} else {
row.push_back(State::kObstacle);
}
}
return row;
}
vector<vector<State>> ReadBoardFile(string path) {
ifstream myfile (path);
vector<vector<State>> board{};
if (myfile) {
string line;
while (getline(myfile, line)) {
vector<State> row = ParseLine(line);
board.push_back(row);
}
}
return board;
}
/**
* Compare the F values of two cells.
*/
bool Compare(const vector<int> a, const vector<int> b) {
int f1 = a[2] + a[3]; // f1 = g1 + h1
int f2 = b[2] + b[3]; // f2 = g2 + h2
return f1 > f2;
}
/**
* Sort the two-dimensional vector of ints in descending order.
*/
void CellSort(vector<vector<int>> *v) {
sort(v->begin(), v->end(), Compare);
}
// Calculate the manhattan distance
int Heuristic(int x1, int y1, int x2, int y2) {
return abs(x2 - x1) + abs(y2 - y1);
}
/**
* Check that a cell is valid: on the grid, not an obstacle, and clear.
*/
bool CheckValidCell(int x, int y, vector<vector<State>> &grid) {
bool on_grid_x = (x >= 0 && x < grid.size());
bool on_grid_y = (y >= 0 && y < grid[0].size());
if (on_grid_x && on_grid_y)
return grid[x][y] == State::kEmpty;
return false;
}
/**
* Add a node to the open list and mark it as open.
*/
void AddToOpen(int x, int y, int g, int h, vector<vector<int>> &openlist, vector<vector<State>> &grid) {
// Add node to open vector, and mark grid cell as closed.
openlist.push_back(vector<int>{x, y, g, h});
grid[x][y] = State::kClosed;
}
/**
* Expand current nodes's neighbors and add them to the open list.
*/
void ExpandNeighbors(const vector<int> ¤t, int goal[2], vector<vector<int>> &openlist, vector<vector<State>> &grid) {
// Get current node's data.
int x = current[0];
int y = current[1];
int g = current[2];
// Loop through current node's potential neighbors.
for (int i = 0; i < 4; i++) {
int x2 = x + delta[i][0];
int y2 = y + delta[i][1];
// Check that the potential neighbor's x2 and y2 values are on the grid and not closed.
if (CheckValidCell(x2, y2, grid)) {
// Increment g value and add neighbor to open list.
int g2 = g + 1;
int h2 = Heuristic(x2, y2, goal[0], goal[1]);
AddToOpen(x2, y2, g2, h2, openlist, grid);
}
}
}
/**
* Implementation of A* search algorithm
*/
vector<vector<State>> Search(vector<vector<State>> grid, int init[2], int goal[2]) {
// Create the vector of open nodes.
vector<vector<int>> open {};
// Initialize the starting node.
int x = init[0];
int y = init[1];
int g = 0;
int h = Heuristic(x, y, goal[0],goal[1]);
AddToOpen(x, y, g, h, open, grid);
while (open.size() > 0) {
// Get the next node
CellSort(&open);
auto current = open.back();
open.pop_back();
x = current[0];
y = current[1];
grid[x][y] = State::kPath;
// Check if we're done.
if (x == goal[0] && y == goal[1]) {
// TODO: Set the init grid cell to kStart, and
// set the goal grid cell to kFinish before returning the grid.
grid[init[0]][init[1]] = State::kStart;
grid[goal[0]][goal[1]] = State::kFinish;
return grid;
}
// If we're not done, expand search to current node's neighbors.
ExpandNeighbors(current, goal, open, grid);
}
// We've run out of new nodes to explore and haven't found a path.
cout << "No path found!" << "\n";
return std::vector<vector<State>>{};
}
string CellString(State cell) {
switch(cell) {
case State::kObstacle: return "⛰️ ";
case State::kPath: return "🚗 ";
case State::kEmpty: return "E ";
case State::kClosed: return "C ";
case State::kStart: return "🚦 ";
case State::kFinish: return "🏁 ";
default: return "? ";
// TODO: Add cases to return "🚦 " for kStart
// and "🏁 " for kFinish.
}
}
void PrintBoard(const vector<vector<State>> board) {
for (int i = 0; i < board.size(); i++) {
for (int j = 0; j < board[i].size(); j++) {
cout << CellString(board[i][j]);
}
cout << "\n";
}
}
#include "test.cpp"
int main() {
int init[2]{0, 0};
int goal[2]{4, 5};
auto board = ReadBoardFile("1.board");
auto solution = Search(board, init, goal);
PrintBoard(solution);
// Tests
TestHeuristic();
TestAddToOpen();
TestCompare();
TestSearch();
TestCheckValidCell();
TestExpandNeighbors();
}